# Photoionization mass spectrometric study of CH<sub>3</sub>OF

B. Ruscic, E. H. Appelman, and J. Berkowitz

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 2 July 1991; accepted 2 August 1991).

The vacuum ultraviolet photoionization mass spectrum of CH<sub>3</sub>OF displays a prominent parent ion peak, whose adiabatic onset is 11.340  $\pm$  0.008 eV, although much lower energy fragmentation processes (CH<sub>2</sub>O<sup>+</sup> + HF, 8.0 eV; CH<sub>2</sub>OH<sup>+</sup> + F, 9.3 eV) are possible. These lower energy processes have very low intensity. Two higher energy processes, to CH<sub>3</sub><sup>+</sup> + OF and CH<sub>2</sub>O<sup>+</sup> + H + F, are observed. Their thresholds are used to determine  $\Delta H_{f0}^{0}$ (CH<sub>3</sub>OF)> - 23.0  $\pm$  0.7 kcal/mol, or  $D_0$  (CH<sub>3</sub>O-F)  $\leq$  47.4  $\pm$  1.2 kcal/mol. CH<sub>2</sub>OF<sup>+</sup> is a significant fragment, whose appearance energy leads to  $\Delta H_{f0}^{0}$  (CH<sub>2</sub>OF<sup>+</sup>)  $\approx$  215.1  $\pm$  0.8 kcal/mol.

# I. INTRODUCTION

Methyl hypofluorite, CH<sub>3</sub>OF, has recently been synthesized.<sup>1</sup> Its electron impact mass spectrum (70 eV) displays a prominent parent peak, as well as prominent fragments at M15 (CH<sub>3</sub><sup>+</sup>) and M29 (HCO<sup>+</sup>). From a correlation of <sup>19</sup>F nuclear magnetic resonance (NMR) shifts in hypofluorites with O–F bond energies, it has been estimated<sup>1</sup> that the O–F bond energy in CH<sub>3</sub>OF is 48–49 kcal/mol, only slightly smaller than that in HOF.<sup>2</sup> (The dissociation energy of diatomic OF is 51.4 kcal/mol.<sup>3</sup>) Upon reflection, the existence of a prominent parent ion is somewhat puzzling.

If we take<sup>4</sup>  $\Delta H_{f0}^0$  (CH<sub>3</sub>0) = 5.9 ± 1.0 kcal/mol and  $\Delta H_{\ell 0}^{0}(F) = 18.47 \pm 0.07$  kcal/mol,<sup>5</sup> and assume an O-F bond energy of 48.5 kcal/mol, then  $\Delta H_{f0}^0$  $(CH_3OF) = -24.1$  kcal/mol. Thus  $CH_3OF$  is stable with respect to decomposition into the elements in their standard states, but highly unstable<sup>6</sup> (by  $\sim 66$  kcal) with respect to decomposition into  $CH_2O + HF$ . The ionization potential of CH<sub>3</sub>OF is not likely to be less than that of CH<sub>3</sub>OH  $(\sim 10.85 \text{ eV})$ .<sup>5</sup> However, the thermochemical threshold for formation of  $CH_2O^+ + HF$  is only 8.01 eV, and that for formation of CH<sub>2</sub>OH<sup>+</sup> + F, 9.30 eV [based on  $\Delta H_{f0}^{0}$  $(CH_3OF) \sim -24$  kcal/mol]. Even the two-step process leading to  $HCO^+ + H + HF$  should have an onset at 9.01 eV. Since the estimated appearance potentials of at least two primary fragment channels are significantly lower than the estimated ionization potential, it is surprising that one observes a prominent parent ion peak.

The photoionization mass spectrometric method offers a means of determining the ionization potential of CH<sub>3</sub>OF, as well as setting limits on  $\Delta H_{f0}^0$  (CH<sub>3</sub>OF). In addition, the various channels for fragmentation could be explored, in order to better understand the dynamics of the unimolecular decomposition of CH<sub>3</sub>OF<sup>+</sup>.

## **II. EXPERIMENTAL ARRANGEMENT**

The instrumental setup consisting of a 3 m vuv monochromator, an ionization region, a quadrupole mass filter, and ion and light detectors has been described previously.<sup>7</sup> The wavelength resolution was kept at 0.84 FWHM throughout all experiments. In the wavelength region where the many-line  $H_2$  lamp was employed (~950 Å and longer), measurements were confined to light peaks.

Methyl hypofluorite was prepared by the reaction of elemental fluorine (10% in  $Ar + N_2$ ) with a 50% solution of methanol in propionitrile at -78 °C.<sup>1</sup> The reaction mixture was warmed to -45 °C, and the methyl hypofluorite was transferred in a stream of N2 to a Kel-F U tube cooled with liquid N<sub>2</sub>. The N<sub>2</sub> was subsequently removed in high vacuum. The sample was admitted into the ionization cell from the Kel-F U tube, which was immersed in a constant temperature slush bath (methylcvclohexane, -127 °C). In order to keep the decomposition into HF and CH<sub>2</sub>O to a minimum, all connections were made using stainless steel, Teflon, and Kel-F. One  $\sim 200$  mg sample of CH<sub>3</sub>OF exploded violently in the slush bath, destroying both the U tube and the Dewar containing the bath, and underscoring the inherent instability of the compound. Adequate safety precautions must be employed when working with methyl hypofluorite, including the use of face shield and gloves, and quantities should be limited to the smallest amounts needed for the particular experiment.

## **III. EXPERIMENTAL RESULTS**

Figure 1 displays the photoion yield curve of CH<sub>3</sub>OF<sup>+</sup>, and on the same scale, the various fragment ion yield curves. The parent ion is indeed prominent. Onset of CH<sub>3</sub>OF<sup>+</sup> is rather abrupt; the adiabatic ionization potential is determined to be 1093.3  $\pm$  0.7 Å = 11.340  $\pm$  0.008 eV, the vertical ionization potential (mid-rise) about 1076 Å = 11.52 eV. There is a hint of step structure, with a step width of ~950  $\pm$  100 cm<sup>-1</sup>. The ion yield remains roughly constant between ~1050 and 850 Å, gradually declining toward higher energy.

The postulated low energy fragment ions  $CH_2O^+$ (M30) and  $CH_2OH^+$  (M31) are very weak.  $CH_2OH^+$  is estimated to be  $\leq 0.03$  of  $CH_3OF^+$  at all wavelengths. The measured ion intensities at M31 are mostly attributable to an impurity of methanol (used in preparing the sample). Below



FIG. 1. Photoion yield curves of species observed in the photoionization of CH<sub>3</sub>OF. The relative intensities are faithfully reproduced in the figure. O M50, CH<sub>3</sub>OF<sup>+</sup>;  $\Box$  M49, CH<sub>2</sub>OF<sup>+</sup>;  $\Delta$  M30, CH<sub>2</sub>O<sup>+</sup>;  $\nabla$  M29, HCO<sup>+</sup>;  $\Diamond$  M15, CH<sub>3</sub><sup>+</sup>.

13.75 eV (>902 Å), M30 (CH<sub>2</sub>O<sup>+</sup>) is mostly from formaldehyde, a decomposition product of CH<sub>3</sub>OF. At about 10.2 eV (~1220 Å), there may be very small tails of CH<sub>2</sub>O<sup>+</sup> and CH<sub>2</sub>OH<sup>+</sup>, perhaps due to CH<sub>3</sub>OF, but both are ~0.001 of the parent ion at ~11.5 eV.

Peaks characteristic of  $CH_2O^+$  ( $CH_2O$ )<sup>8</sup> can be discerned at ~945 and 955 Å. However, at ~820 Å = 15.1 eV, the  $CH_2O^+$  intensity has grown beyond that attributable to formaldehyde, and attains an intensity about 1/3 that of the parent ion. The onset of this marked growth occurs at  $902 \pm 2$  Å = 13.75  $\pm 0.03$  eV (see Fig. 2). Similarly, about half of the M29 intensity at ~930 Å can be attributed to HCO<sup>+</sup> from the formaldehyde impurity,<sup>8</sup> but at shorter wavelength the curve does not track HCO<sup>+</sup> (CH<sub>2</sub>O). Between 970 and 930 Å, there is an almost linear increase in the ion yield, followed by a plateau (930–910 Å) and then a more rapid and markedly curved ascent without a distinct onset to a maximum at ~810–800 Å. No thermochemically significant threshold can be gleaned from this photoion yield curve, at least partly because it is a superposition of HCO<sup>+</sup> (CH<sub>2</sub>O) and HCO<sup>+</sup> (CH<sub>3</sub>OF), and perhaps also HCO<sup>+</sup> (CH<sub>3</sub>OH).

Besides  $CH_3OF^+$ , the major ions devoid of significant impurity contributions are M15 ( $CH_3^+$ ) and M49



FIG. 2. Photoion yield curve of  $CH_2O^+$ ( $CH_3OF$ ). The region above ~910 Å is attributable to  $CH_2O^+$  ( $CH_2O$ ). (CH<sub>2</sub>OF<sup>+</sup>). The methyl cation attains an intensity about 1/3 that of the parent ion at ~820 Å = 15.1 eV. The extrapolated onset for this ion (see Fig. 3) is  $920.5 \pm 1$  Å=13.469  $\pm 0.015$  eV. The CH<sub>2</sub>OF<sup>+</sup> fragment ion increases to ~0.15 of the parent-ion intensity at ~910 Å=13.6 eV. Its extrapolated threshold (see Fig. 4) is  $992.5 \pm 1.0$  Å=12.492  $\pm 0.013$  eV.

Each of the fragment-ion thresholds should be increased by the internal energy of  $CH_3OF$  at 298 K to convert them to an equivalent 0 K threshold.<sup>9</sup> The internal energy of  $CH_3OF$ at 298 K is calculated to be 0.070 eV, using *ab initio* calculated<sup>10</sup> vibrational frequencies, reduced by 10%.

# **IV. INTERPRETATION OF RESULTS**

From 0 K appearance potential ( $<13.539 \pm 0.015 \text{ eV}$ ) for the reaction

$$CH_3OF + h\nu \rightarrow CH_3^+ + OF + e$$
,

 $\Delta H_{f0}^{0}$  (CH<sub>3</sub>) = 35.78 ± 0.12 kcal/mol,<sup>5</sup> I.P.(CH<sub>3</sub>) = 9.843<sub>4</sub> ± 0.000<sub>6</sub> eV<sup>11</sup> and  $\Delta H_{f0}^{0}$  (OF) = 26.1 ± 2.3 kcal/mol,<sup>12</sup> we can deduce that  $\Delta H_{f0}^{0}$  (CH<sub>3</sub>OF) > - 23.3 ± 2.3 kcal/mol. Hence it is slightly less stable than our initial estimate. With this support, we can examine the significance of the marked growth in CH<sub>2</sub>O<sup>+</sup>, commencing at 902 Å (13.82 ± 0.03 eV at 0 K). If the products were CH<sub>2</sub>O<sup>+</sup> + HF, the predicted onset would be about 5.8 eV lower. The dissociation would presumably proceed through a tight, four-center transition state. Under those circumstances, it is very unlikely that the dissociation probability would suddenly start increasing 5.8 eV above threshold, which would imply that some excited state is being formed with much greater probability than the ground state. A more plausible explanation is that the products are CH<sub>2</sub>O<sup>+</sup> + H + F, which would not involve a tight transition state and would correspond to about the predicted threshold for this process. These products could formed sequentially, be i.e.,  $CH_3OF^+ \rightarrow CH_2OF^+ + H \rightarrow CH_2O^+ + F + H$  (see below). By combining the 0 K threshold for CH<sub>2</sub>O<sup>+</sup> with  $\Delta H_{f0}^0$  $(CH_2O^+) = 225.58 \pm 0.13$ kcal/mol,<sup>5,8</sup>  $\Delta H^{0}_{f0}(\mathbf{H})$  $= 51.634 \text{ kcal/mol}^{5}$ and  $\Delta H_{f0}^{0}$  (F). = 18.47 + 0.07 kcal/ mol,<sup>5</sup> we obtain

$$\Delta H_{f0}^{0}(CH_{3}OF) \ge -23.0 \pm 0.7$$
 kcal/mol.

Hence this interpretation for the threshold of  $CH_2O^+$  is almost certainly the correct one, and reduces the stability of  $CH_3OF$  slightly. From the threshold for M49 ( $CH_2OF^+$ ), we can now estimate

$$\Delta H_{f0}^0$$
 (CH<sub>2</sub>OF<sup>+</sup>)  $\approx$  215.1  $\pm$  0.8 kcal/mol.

We are unaware of any previous value for this quantity.

# **V. DISCUSSION**

#### A. Energetics

From the limiting values for  $\Delta H_{f0}^{0}$  (CH<sub>3</sub>OF) deduced in Sec. IV, we can infer limiting values for the O-F bond energy in this molecule. Thus, from the CH<sub>3</sub><sup>+</sup> threshold, we obtain  $D_0$  (CH<sub>3</sub>O-F)  $\leq$  47.7  $\pm$  2.5 kcal/mol; from the CH<sub>2</sub>O<sup>+</sup> threshold,  $D_0$  (CH<sub>3</sub>O-F)  $\leq$  47.4  $\pm$  1.2 kcal/mol. The latter is the more defining value, since its upper limit is lower, and it has a smaller uncertainty, although the two results agree within experimental errors.

It will be recalled that the <sup>19</sup>F NMR shifts, when correlated with bond energies of other hypofluorites, implied a bond energy for CH<sub>3</sub>O–F about 1–3 kcal/mol less than  $D_0$ (HO–F). A reassessment of the latter quantity<sup>13</sup> leads to  $D_0$ 



FIG. 3. Photoion yield curve of  $CH_{3}^{+}$  (CH<sub>3</sub>OF).



FIG. 4. Photoion yield curve of  $CH_2OF^+$  ( $CH_3OF$ ).

 $(HO-F) \leq 47.7$  kcal/mol. Hence the more limiting photoionization values agrees in direction, though not in magnitude, with the inference from the NMR shifts.

#### **B. Structure**

Curtiss and Pople<sup>10</sup> have calculated the geometric structures of CH<sub>3</sub>OF and CH<sub>3</sub>OF<sup>+</sup>. Both have C, symmetry, with similar C–H and C–O distances. The major difference is a diminution in O–F distance from 1.451 Å in the neutral species to 1.313 Å in the cation. There is also a slight increase in the C–O–F angle, from 103° to 110°. Hence one can anticipate a Franck–Condon progression in the O–F stretching frequency upon photoionization. The calculated<sup>10</sup> frequency is 1092.9 cm<sup>-1</sup>, ~984 cm<sup>-1</sup> upon reduction by 10%. This agrees very well with the weak step structure observed (Sec. III), having an average spacing of 950  $\pm$  100 cm<sup>-1</sup>.

# **C. Dynamics**

In Sec. I, it was anticipated that the appearance potentials for  $CH_2O^+$  (+ HF) and  $CH_2OH^+$  (+ F) would be much smaller than the ionization potential of  $CH_3OF$ . Our experiments have verified these views, and even increased the gaps. Thus I.P. ( $CH_3OF$ ) = 11.340  $\pm$  0.008 eV, and the appearance potentials calculated [based on our limiting value for  $\Delta H_{f0}^0$  ( $CH_3OF$ )] are:  $CH_2O^+$ , <7.95 eV;  $CH_2OH^+$ , <9.25 eV. There are a number of cases known ( $CF_4$  is perhaps the simplest<sup>14</sup>) in which no parent ion is observed, and the first fragment ion occurs at the ionization potential. The present case is unusual<sup>15</sup> because the predicted onset of fragment ions occurs well below the ionization potential, but the metastable parent ion is, nevertheless, very prominent in the mass spectrum. Clearly, there must be a substantial activation barrier to this highly exoergic decomposition.

The photoion yield curve of  $CH_3OF^+$  ( $CH_3OF$ ) indicates that  $CH_3OF^+$  is formed primarily near the local mini-

mum of the cation's potential energy surface. Once the cation is formed, its decomposition is inhibited, presumably by the aforementioned activation barrier. At energies below the ionization potential, Rydberg states may be formed with approximately the same molecular structure as  $CH_3OF^+$ . In principle, these states could autoionize onto a portion of the  $CH_3OF^+$  surface closer to the region where decomposition occurs. If the process is electronic autoionization, Franck– Condon factors also enter here and substantially reduce the transition probability. Hence these Rydberg states would likely be predissociated, or reradiate, more rapidly than they could autoionize. The formation of  $CH_2OH^+ + F$  can be described in similar terms.

The formation of  $CH_3^+$  (+OF) may be a direct dissociation (as inferred<sup>6</sup> in the corresponding  $CH_3^+$  formation from  $CH_3OH$ ), or it may be rationalized by quasiequilibrium theory. Further work is required here. The formation of  $CH_2O^+$  (+H+F) is very likely a stepwise process, rather than a three-body decomposition. The  $CH_2OF^+$  ion is initially observed at 12.49 eV; this ion probably decomposes further to  $CH_2O^+$  + F at 13.73 eV. Observation of a metastable ion at M = 18.37 amu would be revealing in this case.

This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

<sup>4</sup>The value of  $\Delta H_{0}^{\rho}$  (CH<sub>3</sub>O) currently favored is based on pyrolysis studies by Batt and co-workers. From the temperature dependence of the reaction CH<sub>3</sub>ONO  $\rightarrow$  CH<sub>3</sub>O + NO, L. Batt and R. T. Milne [Int. J. Chem. Kinet.

 <sup>&</sup>lt;sup>1</sup>M. Kol. S. Rozen, and E. Appelman, J. Am. Chem. Soc. **113**, 2648 (1991).
<sup>2</sup>J. Berkowitz, E. H. Appelman, and W. A. Chupka, J. Chem. Phys. **58**, 1022 (1972).

<sup>1950 (1973).</sup> <sup>3</sup>K. P. Huber and G. Herzberg, *Molecular Spectra and Molecular Structure* 

IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

(2)

6, 945 (1974)] obtained  $\Delta H_{298} = 41.8 \pm 0.9$  kcal/mol, from which we compute  $\Delta H_{f298}^{\circ}$  (CH<sub>3</sub>O) = 4.0 ± 1.0 kcal/mol. Similarly, L. Batt and R. D. McCulloch [Int. J. Chem. Kinet. 8, 491 (1976)] obtained 37.6 ± 0.2 kcal/mol at 298 K for the enthalpy of decomposition of CH<sub>3</sub>OOCH<sub>3</sub> into 2 CH<sub>3</sub>O, from which we compute  $\Delta H_{f298}^{\circ}$  (CH<sub>3</sub>O) = 3.8 ± 0.2 kcal/mol. Taking the average of these values, and retaining the larger error limit, we arrive at  $\Delta H_{f0}^{\circ}$  (CH<sub>3</sub>O) = 5.9 ± 1.0 kcal/mol.

<sup>5</sup>V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veitz, V. A. Medvedev, G. A. Khachkuruzov, and V. S. Yungman, *Termodinamicheskie Svoistva Individual'nikh Veshchestv*, (Nauka, Moscow, 1978).

- <sup>o</sup>J. Berkowitz, J. Chem. Phys. **69**, 3044 (1978).
- <sup>7</sup>S. T. Gibson, J. P. Greene, and J. Berkowitz, J. Chem. Phys. 83, 4319 (1985).
- <sup>8</sup>P. M. Guyon, W. A. Chupka, and J. Berkowitz, J. Chem. Phys. **64**, 1419 (1976).
- <sup>9</sup>P. M. Guyon and J. Berkowitz, J. Chem. Phys. 54, 1814 (1971).
- <sup>10</sup>L. A. Curtiss and J. A. Pople, J. Chem. Phys. (submitted).
- <sup>11</sup>G. Herzberg, Proc. R. Soc. London, Ser. A 292, 291 (1961).
- <sup>12</sup> J. Berkowitz, P. M. Dehmer, and W. A. Chupka, J. Chem. Phys. **59**, 925 (1973).
- <sup>13</sup>Berkowitz, Appelman, and Chupka (Ref. 2) measured two appearance potentials in the photoionization of HOF. These were

(1) HOF +  $h\nu \rightarrow 0^+$  + HF + e,  $\Delta H_0 \le 14.34 \text{ eV}$ ,

 $\rightarrow$  OH<sup>+</sup> + F + e,  $\Delta H_0 \leq 15.07$  eV.

Both of these thresholds are upper limits. At the time these results were published, the I. P. of OH was not well established, and hence the first process (which was also the lowest energy process) had more credence. However, the photoion yield curve approached the threshold gradually, a behavior which could be attributed to the rearrangement required to produce O<sup>+</sup> + HF, and perhaps also to a Franck-Condon gap in this region of ionization of HOF. By contrast, the OH+ fragment increased quasilinearly from threshold. With current values for  $\Delta H^{0}_{f0}(O^{+})$  and  $\Delta H^{0}_{f0}$ (HF), the onset for the first process yields  $\Delta H_{fo}^{0}$  (HOF) > -23.0 kcal/mol; since  $\Delta H_{f0}^0$  (OH<sup>+</sup>) is now well established, as well as  $\Delta H_{f0}^0$ (F), the threshold for process (2) yields  $\Delta H_{f0}^0$  (HOF)> - 20.0 kcal/mol. Clearly, the limit from this second process is more stringent and significant than the first. Also, the threshold for process (2), together with the ionization potential of OH, yields directly an upper limit to the O-F bond energy in HOF of <47.7 kcal/mol. This value is in good agreement with a recent ab initio calculation by Pople and Curtiss (Ref. 10) at the Gl level, which gives  $D_0$  (HO-F) = 48.4 kcal/mol.

<sup>14</sup>T. A. Walter, C. Lifshitz, W. A. Chupka, and J. Berkowitz, J. Chem. Phys. **51**, 3531 (1969).

<sup>15</sup> We have encountered one additional case recently. The ionization potential of  $CH_3O$  is 10.72 eV, but  $HCO^+ + H_2$  should occur at 8.3 eV, and is weak. B. Ruscic and J. Berkowitz, J. Chem. Phys. (accepted).